2ª Lista de Exercícios Álgebra Linear Base e Dimensão

Seção 2.1

Exercício 1 * Mostre que $\{0, u_1, \dots, u_n\} \subset V$ é um conjunto L.D., onde 0 é o elemento neutro do espaço vetorial V.

Exercício 2 Verifique, em cada um dos itens abaixo, se o subconjunto S do espaço vetorial V é L.I. ou L.D.

(a)
$$S = \{(1,2), (-3,1)\}, V = \mathbb{R}^2$$
.

(b)
$$S = \{1 + t - t^2, 2 + 5t - 9t^2\}, V = \mathcal{P}_2(\mathbb{R}).$$

(c)
$$S = \left\{ \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix} \right\}, V = M_2(\mathbb{R}).$$

(d)
$$S = \{(1, 2, 2, -3), (-1, 4, -2, 0)\}, V = \mathbb{R}^4.$$

(e)
$$S = \left\{ \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 10 & 5 & 7 \\ -1 & 0 & 1 \end{pmatrix} \right\}, V = M_3(\mathbb{R}).$$

Exercício 3 Mostre que o conjunto $\{1, \, \sin^2 x, \cos^2 x\}$ de vetores de $C([-\pi, \pi])$ é L.D..

Exercício 4 Suponha que $\{v_1, \ldots, v_n\}$ é um subconjunto L.I. de um espaço vetorial. Mostre que $\{a_1v_1, \ldots, a_nv_n\}$ também é L.I., desde que os escalares a_i sejam todos não nulos.

Seções 2.2 e 2.3

Exercício 5 Verifique se os elementos de $B = \{1 + x, 1 - x, 1 - x^2\}$ formam uma base de $\mathcal{P}_2(\mathbb{R})$.

Exercício 6 Encontre uma base para o subespaço vetorial de \mathbb{R}^3 dado por U = [(1,0,1),(1,2,0),(0,2,-1)].

Exercício 7 Mostre que o subconjunto $\{1,i\}$ é uma base de \mathbb{C} sobre \mathbb{R} .

Exercício 8 * No espaço vetorial \mathbb{R}^3 , considere os seguintes subespaços:

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\} \ e \ V = [(1, 2, 0), (3, 1, 2)].$$

Determine uma base e a dimensão dos subespaços U, V, U + V e $U \cap V$.

Exercício 9 Dar uma base e a dimensão do subespaço W de \mathbb{R}^4 , onde $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y = y \ e \ x - 3y + t = 0\}.$

Exercício 10 No espaço vetorial \mathbb{R}^3 , considere os sequintes subespaços:

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}, V = \{(x, y, z) \in \mathbb{R}^3 \mid y - 2z = 0\} \quad e \quad W = [(1, 1, 0), (0, 0, 2)].$$

Determine uma base e a dimensão dos subespaços: $U, V, W, U \cap V$ e V + W e U + V + W.

Seções 2.4 e 2.5

Exercício 11 Determine as coordenadas do vetor $u=(-1,8,5)\in\mathbb{R}^3$ em relação a cada uma das bases abaixo:

- (a) base canônica.
- **(b)** $\{(0,0,1),(0,1,1),(1,1,1)\}.$
- (c) $\{(1,2,1),(0,3,2),(1,1,4)\}.$

Exercício 12 Determine as coordenadas de $p(t) \in \mathcal{P}_3(\mathbb{R})$, dado por $p(t) = 10 + t^2 + 2t^3$, $t \in \mathbb{R}$, em relação às seguintes bases de $\mathcal{P}_3(\mathbb{R})$:

- (a) base canônica.
- (b) $\{1, 1+t, 1+t+t^2, 1+t+t^2+t^3\}.$
- (c) $\{4+t,2,2-t^2,t+t^3\}$.

Exercício 13 Determine as coordenadas do vetor $\begin{pmatrix} 2 & 5 \\ -8 & 7 \end{pmatrix} \in M_2(\mathbb{R})$ em relação às seguintes bases de $M_2(\mathbb{R})$:

- (a) base canônica.
- (b) $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$.

Exercício 14 * Considere as bases $B = \{e_1, e_2, e_3\}$ e $C = \{g_1, g_2, g_3\}$ de um espaço vetorial V relacionadas da seguinte forma:

$$\begin{cases} g_1 = e_1 + e_2 - e_3 \\ g_2 = 2e_2 + 3e_3 \\ g_3 = 3e_1 + e_3 \end{cases}$$

- (a) Determine as matrizes mudança da base B para a base C, isto é, M_B^C , e da base C para a base B, isto é, M_C^B .
- (b) Se a matriz das coordenadas do vetor v em relação à base B, isto \acute{e} , $(v)_B$, \acute{e} dada por $\begin{pmatrix} 1\\3\\2 \end{pmatrix}$ encontre a matriz das coordenadas de v em relação a base C, isto \acute{e} , $(v)_C$.
- (c) Se a matriz das coordenadas do vetor v em relação à base C, isto \acute{e} , $(v)_C$, \acute{e} dada por $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ encontre a matriz das coordenadas de v em relação a base B, isto \acute{e} , $(v)_B$.

Exercício 15 Considere as bases ordenadas $B = \{1, 1+t, 1+t^2\}$ e $C = \{1, t, t^2\}$ de $\mathcal{P}_2(\mathbb{R})$.

- (a) Determine as matrizes mudança da base B para a base C, isto é, M_B^C , e da base C para a base B, isto é, M_C^B .
- (b) Se a matriz das coordenadas do vetor v em relação à base B, isto \acute{e} , $(v)_B$, \acute{e} dada por $\begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}$ encontre a matriz das coordenadas de v em relação a base C, isto \acute{e} , $(v)_C$.

(c) Se a matriz das coordenadas do vetor v em relação à base C, isto \acute{e} , $(v)_C$, \acute{e} dada por $\begin{pmatrix} 8 \\ -1 \\ 3 \end{pmatrix}$ encontre a matriz das coordenadas de v em relação a base B, isto \acute{e} , $(v)_B$.

Exercício 16 Considere o seguinte subespaço de $M_2(\mathbb{R})$:

$$W = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in M_2(\mathbb{R}) \mid x - y - z = 0 \right\}.$$

(a) Mostre que B dada pelas matrizes

$$B_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, B_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

e C dada pelas matrizes

$$C_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, C_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, C_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

 $s\~{a}o$ bases de W.

- (b) Encontre as matrizes de mudança da base B para a base C e da base C para a base B.
- (c) Encontre uma base D de W, tal que a matriz

$$P = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 1 \end{array}\right)$$

seja a matriz de mudança da base D para a base B, isto é, $P=M_D^B$.