4ª Lista de Exercícios Álgebra Linear Espaços com produto interno

Seções 4.1 e 4.2

Exercício 1 Considerando o espaço euclidiano \mathbb{R}^3 , calcular $\langle u, v \rangle$ nos seguintes casos:

(a)
$$u = \left(\frac{1}{2}, 2, 1\right) e v = (4, 1, -3)$$

(b)
$$u = (2,1,0) e v = (4,0,2);$$

(c)
$$u = (1,1,1) e = (2,-1,5).$$

Exercício 2 Seja V um espaço euclidiano. Mostre que a aplicação

$$(u,v) \rightarrow u * v = 2\langle u,v \rangle$$

também é um produto interno sobre V. é possível generalizar esse resultado? Como?

Exercício 3 * Sejam $u = (x_1, x_2)$ e $v = (y_1, y_2)$ vetores genéricos do \mathbb{R}^2 .

- (a) Mostre que $\langle u, v \rangle = x_1y_1 2x_1y_2 2x_2y_1 + 5x_2y_2$ define um produto interno sobre \mathbb{R}^2 .
- (b) Determine a norma de u = (1,2) em relação ao produto interno usual e também em relação ao produto interno definido em (a).

Exercício 4 Sejam u e v vetores de um espaço euclidiano. Mostre as identidades a seguir:

1.
$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$$
 (Identidade do Paralelogramo).

2.
$$||u+v||^2 - ||u-v||^2 = 4\langle u,v \rangle$$
.

Exercício 5 Achar o ângulo entre os seguintes vetores do \mathbb{R}^3 :

(a)
$$u = (1, 1, 1) \ e \ v = \left(\frac{1}{2}, -1, \frac{1}{2}\right);$$

(b)
$$u = (1, -1, 0) e v = (2, -1, 2).$$

Exercício 6 Chama-se **traço** de um matriz quadrada $A = (a_{ij})$ de ordem n a soma dor termos da sua diagonal principal. Notação: tr(A).

Sendo $V = M_{m \times n}(\mathbb{R})$, mostre que $\langle A, B \rangle = \operatorname{tr}(B^t A)$ define um produto interno sobre V.

Exercício 7 Para cada um dos itens abaixo, determinar: $\langle u, v \rangle$, ||u||, ||v|| e o ângulo entre u e v.

(a) *
$$V = \mathbb{R}^2$$
, com o produto interno usual, $u = (1, 2, 1)$ e $v = (3, 4, 2)$.

(b)
$$V = \mathcal{P}_2(\mathbb{R})$$
, com o produto interno $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$, $u = p(t) = 1 + t + 4t^2$ e $v = q(t) = 2 + 5t^2$.

(c)
$$V = M_2(\mathbb{R})$$
, com o produto interno $\langle A, B \rangle = \operatorname{tr}(A^t B)$, $A = \begin{pmatrix} 1 & 2 \\ 4 & 12 \end{pmatrix}$ $e B = \begin{pmatrix} 8 & -1 \\ 4 & 3 \end{pmatrix}$.

Seção 4.3

Exercício 8 Consideremos no espaço vetorial \mathbb{R}^2 o produto interno dado por $\langle u, v \rangle = x_1y_1 + 2x_2y_2$, para todo par de vetores $u = (x_1, x_2)$, $v = (y_1, y_2)$. Verificar se u e v são ortogonais, em relação a esse produto interno, nos sequintes casos:

- (a) u = (1,1) e v = (2,-1);
- **(b)** u = (2,1) e v = (-1,1);
- (c) u = (3,2) e v = (2,-1).

Exercício 9 Determinar m a fim de que os vetores u=(m+1,2) e v=(-1,4) do \mathbb{R}^2 sejam ortogonais (considere o produto interno usual).

Exercício 10 Considere em $\mathcal{P}_2(\mathbb{R})$ o produto interno definido do seguinte modo

$$\left\langle \sum_{i=0}^{2} a_i t^i, \sum_{i=0}^{2} b_i t^i \right\rangle = \sum_{i=0}^{2} a_i b_i,$$

para todo par de polinômios $f(t) = \sum_{i=0}^{2} a_i t^i$ e $g(t) = \sum_{i=0}^{2} b_i t^i$ desse espaço. A base canônica $\{1, t, t^2\}$ de $\mathcal{P}_2(\mathbb{R})$ é ortonormal em relação a esse produto?

Exercício 11 * Ortonormalize a base $u_1 = (1,1,1)$, $u_2 = (1,-1,1)$, $u_3 = (-1,0,1)$ do \mathbb{R}^3 , pelo processo de Gram-Schmidt.

Exercício 12 Achar uma base do subespaço V^{\perp} , onde V é o subespaço de R^4 gerado por (1,0,1,1) e (1,1,2,0). Ortonormalize esta base.

Exercício 13 Seja $W = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y = 0\}$. Determinar uma base ortonormal de W.

Exercício 14 Seja $W = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0\}$. Determinar uma base ortonormal de W.

Exercício 15 Mostre que $T \in L(\mathbb{R}^2)$ definida por $T(x,y) = \left(\frac{1}{2}x - \frac{\sqrt{3}}{2}y, \frac{\sqrt{3}}{2}x + \frac{1}{2}y\right)$ é uma isometria.

Exercício 16 Verifique se $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por $T(A) = A^t$ é uma isometria.